9-4 Inverse Functions
 Inverse of a Relation

The inverse of a relation consisting of the ordered pairs (x, y) is the set of all ordered pairs (y, x).

Notation:

$f^{-1}(x)$

Represents the inverse of the function $f(\mathcal{X})$

Horizontal-Line Test

The inverse of a function is a function if and only if every horizontal line intersects the graph of the given function (passed the vertical-line test) at no more than one point.

If a function passes both the vertical line test AND the horizontal line test, then it is a one-to-one function.

Show $f(x)=6-2 x$ and $g(x)=\frac{6-x}{2}$
are inverses graphically.

$f(x):$
$g(x):$
$(1,4)$
$(3,0)$
$(4,-2)$
$(4,1)$
X
$(0,3)$
X
$(-2,4)$

Graph the inverse of the graph. (Use $y=x$ to find inverse points)

To find the inverse equation of a function

1. Change $f(x)$ to y.
2. Interchange x and y
3. Solve for y
4. Change new y to $f^{l}(x)$

Find the inverse of each function. List any domain restrictions if applicable.

$$
f(x)=x^{2}+1 \quad g(x)=\frac{x+1}{2 x+3}
$$

Find the inverse of each function.
$h(x)=2 x^{3}+3$

$$
g(x)=\sqrt[3]{x}-3
$$

We can verify that two functions are inverses of each other by determining if the composition of the two functions are both equal to x.

$$
\begin{array}{cc}
f \circ g=x & g \circ f=x \\
f \circ f^{-1}=x & f^{-1} \circ f=x
\end{array}
$$

Use composition to determine if the following functions are inverses of each other.

$$
\begin{aligned}
& f(x)=5 x+1 \\
& g(x)=\frac{x-1}{5}
\end{aligned}
$$

