Warm-Up

Write a function with zeros of: 3, 5, -2

Write the polynomial in standard form:
$y=(x+3)(x-2)$

Write a function of minimum degree with given zeros and multiplicities:
1 with multi of 3
-3 with multi of 2
0 with multi of 1

8-3 Complex Zeros

- I can find all zeros of a polynomial including non-real complex zeros
- I can write a polynomial from its zeros
Fundamental Thm of Alg: an nth degree polynomial will have n complex zeros
(May be a combination of real and non-real complex. Some zeros may be repeated)
Complex Conjugates: complex imaginary factors come in conjugate pairs
(if 3 i is a zero, -3 i is also)

Odd functions will always have at least one real zero - why??

Find all zeros of $p(x)=x^{3}-125$. Include any multiplicities greater than 1 .
First factor the difference of two cubes.

Find all zeros of $p(x)=x^{4}-256$. Include multiplicities greater than 1 .

Find use factoring patterns to factor the polynomial.

How many complex zeros does each function have? How many are real? How many are non-real?

$$
x^{2}+5 x-7
$$

$$
x^{3}+8
$$

$$
x^{2}+4
$$

Linear Factorization Thm: a polynomial of nth degree has n linear factors

(some factors may be complex imaginary)

$$
\begin{aligned}
& x^{4}-6 x^{3}+10 x^{2}-6 x+9 \\
& (x-3)(x+3)(x-i)(x+i)
\end{aligned}
$$

Find all zeros and write a linear factorization of the following polynomial:
$x^{4}+x^{3}+5 x^{2}-x-6$

Write the following polynomial in standard form:

$$
y=(x+3 i)(x-3 i)
$$

Write a polynomial function of minimum degree with the following zeros:
4, 7, 2 i

Write a polynomial function of minimum degree with the following zeros in standard form:
$-4,2+3 i$

Write an equation of minimum degree with given zeros and multiplicities:

3 with multi of 2
$5+\mathrm{i}$ with multi of 1

Use the given zero to find the remaining zeros and write a linear factorization:

$$
3-2 i ; x^{4}-6 x^{3}+11 x^{2}+12 x-26
$$

