8-2 Review of Complex Numbers

Write each of the following as a pure imaginary number.
$\sqrt{-16}$
$\sqrt{-18}$
$\sqrt{-3}$

Write each in Standard Form.
$2-\sqrt{-25}$
$3+\sqrt{-50}$
$\frac{4-\sqrt{-12}}{2}$

Add and subtract the following

$$
(4-\sqrt{-4})+(-7+\sqrt{-9})
$$

$$
(4-2 i)-(-2+7 i)
$$

Multiply the following

$$
4 i(3-6 i)
$$

$$
(-2+4 i)(3-i)
$$

Remember from before:

$$
\begin{aligned}
& \sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b} \\
& \quad \text { only works when } \sqrt[n]{a} \text { and } \sqrt[n]{b} \text { are real numbers }
\end{aligned}
$$

This means that

$$
\sqrt{a} \sqrt{b} \neq \sqrt{a b} \text { if } a<0 \text { or } b<0
$$

Multiply

$$
\sqrt{-25} \sqrt{-4}
$$

$$
(2+\sqrt{-16})(1-\sqrt{-4})
$$

Complex Conjugate

If $a+b i$ is a complex number, then its conjugate is defined as $a-b i$

$$
3+2 i \quad 4-3 i \quad-16+32 i
$$

$$
-17 i \quad 4 i
$$

