## 7-3 Graphing Polynomial Functions from Standard Form

# Recall: Finding the Zeros of a Polynomial <br> -Factoring: Find GCF first, then may use special factoring, factoring by grouping, or quadratic factoring -Factor Theorem Use to test a factor from -Remainder Theorem $\triangle$ <br> -Rational Roots Theorem: Helps determine possible rational roots using $x= \pm \frac{\text { factors of constant }}{\text { factors of leading coefficient }}$ 

End Behavior (polynomial)
End Behavior is determined by the degree of the polynomial and the coefficient of the leading term. The mathematical notation is written using limits.


Odd Degree: the left \& right ends go in opp. directions

$$
\begin{array}{llll}
(+) \text { coeff. } & (-) \text { coeff. } & (+) \text { coeff. } & (-) \text { coeff. } \\
& & \text { both up } & \text { both down } \\
\lim _{x \rightarrow \infty} f(x)=\infty & \lim _{x \rightarrow \infty} f(x)=-\infty & & \\
\lim _{x \rightarrow-\infty} f(x)=-\infty & \lim _{x \rightarrow-\infty} f(x)=\infty & \lim _{x \rightarrow \infty} f(x)=\infty & \lim _{x \rightarrow \infty} f(x)=-\infty \\
& & \lim _{x \rightarrow-\infty} f(x)=\infty & \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{array}
$$

Even Degree: both ends go in the same direction

Ex. Find the zeros of the polynomial, then graph by hand

$$
f(x)=-x^{5}-7 x^{4}-12 x^{3}
$$



Ex. Find the zeros of the polynomial, then graph by hand

$$
f(x)=x^{4}+4 x^{3}+x^{2}-6 x
$$



Find the zeros of the polynomial, then graph by hand

$$
f(x)=x^{3}-x^{2}-5 x-3
$$



Name the degree \& the sign of the coefficient of the leading term based on the end behavior:




Find the zeros, graph and analyze including end behavior using limits:

$$
f(x)=(x-1)(x+2)(x+3)
$$

## Domain: <br> Increasing:

Range:
Decreasing:


Maximum: End behavior:

Minimum:

Graph and analyze the following graphs $f(x)=(x-2)^{3}(x+1)^{2}$

Domain: Increasing:

Range: Decreasing:
Symmetry:

Maximum: End behavior:

Minimum:

$$
f(x)=-x^{2}(x-2)^{2}(x+4)^{2}
$$



Graph and analyze the following graphs

$$
f(x)=x^{3}-4 x^{2}-11 x+30
$$



| Domain: | Increasing: |
| :--- | :--- |
| Range: | Decreasing: |

Maximum: End behavior:
Minimum:

