7-2 Graphing Polynomial Functions End Behavior

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Function	Domain	Range	End Behavior
$f(x) = x^2$			As $x \to +\infty$, $f(x) \to$. As $x \to -\infty$, $f(x) \to$.
$f(x) = x^4$			As $x \to +\infty$, $f(x) \to$. As $x \to -\infty$, $f(x) \to$.
$f(x) = x^6$			As $x \to +\infty$, $f(x) \to$. As $x \to -\infty$, $f(x) \to$.

Does it change if I have a negative coefficient? How?

End Behavior

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Function	Domain	Range	End Behavior
f(x) = x			As $x \to +\infty$, $f(x) \to$ As $x \to -\infty$, $f(x) \to$
$f(x) = x^3$			As $x \to +\infty$, $f(x) \to$ As $x \to -\infty$, $f(x) \to$
$f(x) = x^5$			As $x \to +\infty$, $f(x) \to$ As $x \to -\infty$, $f(x) \to$

Does it change if I have a negative coefficient? How?

Multiplicity

The **power** of the factor determines the nature of the intersection at the point x = a. (This is referred to as the multiplicity.)

Straight intersection:

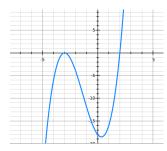
 $(x - a)^1$ The power of the zero is 1.

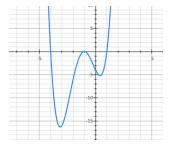
Tangent intersection :

 $(x - a)^{\text{even}}$ The power of the zero is even.

Inflection intersection: (like a slide through) $(x - a)^{\text{odd}}$ The power of the zero is odd.

Graph on a calculator and state the factors, zeros, multiplicity at each zero, extrema


$$f(x) = x^3$$
 $f(x) = x^2(x-2)$


f(x) = x(x-2)(x+2)

Graph the function

g(x) = -(x-4)(x-1)(x+1)(x+2)

Write a function in intercept form for the given graphs whose intercepts are integers. Assume the constant factor of a is either 1 or -1.

