7-2 Graphing Polynomial Functions End Behavior

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Does it change if I have a negative coefficient? How?

End Behavior

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Function	Domain	Range	End Behavior
$f(x)=x$			As $x \rightarrow+\infty, f(x) \rightarrow \square$.
$f(x)=x^{3}$			As $x \rightarrow-\infty, f(x) \rightarrow \square$.
$f(x)=x^{5}$			As $x \rightarrow+\infty, f(x) \rightarrow \square$.
		As $x \rightarrow-\infty, f(x) \rightarrow \square$.	
		As $x \rightarrow+\infty, f(x) \rightarrow \square$.	

Does it change if I have a negative coefficient? How?

Multiplicity

The power of the factor determines the nature of the intersection at the point $x=a$.
(This is referred to as the multiplicity.)
Straight intersection:
$(x-a)^{1} \quad$ The power of the zero is 1 .
Tangent intersection :
$(x-a)^{\text {ven }}$ The power of the zero is even.
Inflection intersection: (like a slide through) $(x-a)^{\text {odd }}$ The power of the zero is odd.

Graph on a calculator and state the factors, zeros, multiplicity at each zero, extrema

$$
f(x)=x^{3} \quad f(x)=x^{2}(x-2)
$$

$$
f(x)=x(x-2)(x+2)
$$

Graph the function

$$
g(x)=-(x-4)(x-1)(x+1)(x+2)
$$

Write a function in intercept form for the given graphs whose intercepts are integers. Assume the constant factor of a is either 1 or -1 .

