6-3 Factoring Polynomials

Remember the factoring patterns you already know:
Difference of two squares: $a^{2}-b^{2}=(a-b)(a+b)$
Perfect square trinomials: $a^{2}+2 a b+b^{2}=(a+b)^{2}$

$$
a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

There are two other factoring patterns that will prove useful:
Sum of two cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Difference of two cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

Factoring by Grouping pg. 357

(A) $x^{3}+x^{2}+x+1$

Write out the polynomial.
Group by common factor.
Factor.
Regroup.
(B) $x^{4}+x^{3}+x+1$

$$
\begin{aligned}
& x^{3}-x^{2}+x-1 \\
& \left(x^{3}-x^{2}\right)+(x-1) \\
& x^{2}(x-1)+1(x-1) \\
& \left(x^{2}+1\right)(x-1)
\end{aligned}
$$

Factor.

$$
3 x^{3}+7 x^{2}+4 x \quad 4 a^{4} b+8 a^{3} b^{3}-10 a^{2} b^{4}
$$

