6-1 Operations with Polynomials

Vocabulary: Monomial

Binomial

Trinomial

Polynomial

The data from the U.S. Census Bureau for 2005-2009 shows that the number of male students enrolled in high school in the United States can be modeled by the function $M(x)=-10.4 x^{3}$ $+74.2 x^{2}-3.4 x+8320.2$, where x is the number of years after 2005 and $M(x)$ is the number of male students in thousands. The number of female students enrolled in high school in the United States can be modeled by the function $F(x)=-13.8 x^{3}+55.3 x^{2}+141 x+7880$, where x is the number of years after 2005 and $F(x)$ is the number of female students in thousands. Estimate the total number of students enrolled in high school in the United States in 2009.

In the equation $T(x)=M(x)+F(x), T(x)$ is the total number of students in thousands.
$V=$ length \times width \times height
$=(x+3)(x+2) x$

Pg. 327

Identify the volume of:
V_{1}
V_{3}
V_{2}
V_{4}

Multiplying Polynomials pg. 328

$$
\begin{aligned}
5 x \cdot 6 x^{3} & =30 x^{1+3} & -2 x^{2} y^{4} z \cdot 5 y^{2} z & =-10 x^{2} y^{4+2} z^{1+1} \\
& =30 x^{4} & & =-10 x^{2} y^{6} z^{2}
\end{aligned}
$$

$$
\begin{aligned}
(2+3 x)(1+x) & =2(1+x)+3 x(x+1) \\
& =2(1)+2(x)+3 x(x)+3 x(1) \\
& =2+2 x+3 x^{1+1}+3 x \\
& =2+5 x+3 x^{2}
\end{aligned}
$$

Multiply the following polynomials pg. 329
$(3+2 x)\left(4-7 x+5 x^{2}\right)$

$$
(x-6)\left(3-8 x-4 x^{2}\right)
$$

Multiplying with a table

$$
\left(x^{2}+3 x-5\right)\left(x^{2}-x+1\right)
$$

	x^{2}	$-x$	1
x^{2}			
$+3 x$			
-5			

