$$
\begin{aligned}
& \text { 5-2 Sum \& Difference Identities } \\
& \begin{array}{l}
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{array}
\end{aligned}
$$

Express the angle as a sum or difference of 2 special angles. 135° 150°

Find the exact value of:
$\cos 105^{\circ}$
$\sin 15^{\circ}$
$\tan 75^{\circ}$

Write as the sin, cos, or tan of an angle:

$\sin 50^{\circ} \cos 26^{\circ}-\cos 50^{\circ} \sin 26^{\circ}$

$\cos 50^{\circ} \cos 26^{\circ}-\sin 50^{\circ} \sin 26^{\circ}$
$\frac{\tan 60^{\circ}-\tan 45^{\circ}}{1+\tan 60^{\circ} \tan 45^{\circ}}$

Prove the identity:

$$
\cos \left(x-90^{\circ}\right)=\sin x
$$

$$
\sin (x-y)+\sin (x+y)=2 \sin x \cos y
$$

