5-1 Pythagorean Identities

Identity: equality that is true for all values of the domain for both expressions as long as they are both defined

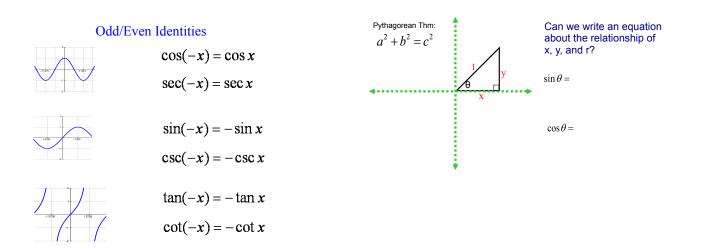
 $\tan\theta \cdot \cos\theta = \sin\theta$

this is true for all θ , as long as $\sin\theta$, $\cos\theta$, and $\tan\theta$ are defined

Reciprocal & Quotient Relationships

$$\sin \theta = \frac{1}{\csc \theta} \qquad \csc \theta = \frac{1}{\sin \theta} \qquad \tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$\cos \theta = \frac{1}{\sec \theta} \qquad \sec \theta = \frac{1}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\tan \theta = \frac{1}{\cot \theta} \qquad \cot \theta = \frac{1}{\tan \theta}$$



 $\sin^2 \theta + \cos^2 \theta = 1$ $\sin^2 \theta = 1 - \cos^2 \theta$ $\cos^2 \theta = 1 - \sin^2 \theta$

Now lets divide by $\cos^2 heta$

 $\sin^2\theta + \cos^2\theta = 1$

Pythagorean Relationships

$$1 + \tan^2 \theta = \sec^2 \theta$$
$$1 = \sec^2 \theta - \tan^2 \theta$$
$$\tan^2 \theta = \sec^2 \theta - 1$$

Now lets divide by
$$\sin^2 \theta$$

 $\sin^2 \theta + \cos^2 \theta = 1$

$1 + \cot^2 \theta = \csc^2 \theta$	Simplify:	
$1 = \csc^2 \theta - \cot^2 \theta$	$\cot x \tan x$	$\sin\theta\csc\theta$
$\cot^2\theta = \csc^2\theta - 1$		

Pythagorean Relationships

$$\sin^{2} \theta + \cos^{2} \theta = 1$$

$$1 + \tan^{2} \theta = \sec^{2} \theta$$

$$1 + \cot^{2} \theta = \csc^{2} \theta$$

$$\sin x \csc(-x)$$

$$\frac{\sec^{2} x}{\tan^{2} x}$$

Simplify $\frac{\sec x}{\sin x} - \frac{\sin x}{\cos x}$

Establish the Identity: $\csc x \cos x = \cot x$

$$\left(1-\sin^2 x\right)\left(1+\tan^2 x\right)=1$$

Simplify:

$$\frac{1}{\sin\alpha - 1} - \frac{1}{\sin\alpha + 1}$$

 $\cos x(\tan x + \cot x) = \csc x$