### 4-3 Law of Sines

### **Explore** Use an Area Formula to Derive the Law of Sines

Recall that the area of a triangle can be found using the sine of one of the angles.

 $Area = \frac{1}{a}b \cdot c \cdot \sin(A)$ 

You can write variations of this formula using different angles and sides from the same triangle.



igap A Rewrite the area formula using side length a as the base of the triangle and  $\angle C$ .



B Rewrite the area formula using side length c as the base of the triangle and  $\angle B$ .



- (i) What do all three formulas have in common?
- (D) Why is this statement true?  $\frac{1}{2}b\cdot c\cdot \sin(A) = \frac{1}{2}a\cdot b\cdot \sin(C) = \frac{1}{2}c\cdot a\cdot \sin(B)$
- $\bigcirc$  Multiply each area by the expression  $\frac{2}{abc}$ . Write an equivalent statement.

## Law of Sines

# Law of Sines Given: $\triangle ABC$ $\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$

### **Your Turn**

Find all the unknown measures using the given triangle. Round to the nearest tenth.

4



-5



Solve the triangle given:

$$A = 76.7^{\circ}$$

$$B = 29.3^{\circ}$$

$$c = 87$$

### **Explain 2** Evaluating Triangles When SSA is Known Information

When you use the Law of Sines to solve a triangle for which you know side-side-angle (SSA) information, zero, one, or two triangles may be possible. For this reason, SSA is called the ambiguous case.



Solve the triangle ABC.

Given a=20, b=5, B=42°

# Solve the triangle ABC. Given: a=3, b=2, A=40°

# Solve the triangle ABC.

Given: a=6, b=8, A=35°



Solve the triangle ABC. Given: a=37, b=40, A=71°