## 4-1 Radians and Unit Circle



Clockwise rotation: Positive degree
Counter Clockwise rotation: Negative degree

Coterminal Angles: Angles that share the same terminal side
Ex. $257^{\circ}$ and $-103^{\circ}$


Definition of a radian
https://en.wikipedia.org/wiki/Radian\#mediaviewer/File:Circle_radians.gif

| CONVERTING DEGREES TO RADIANS | CONVERTING RADIANS TO DEGREES |
| :---: | :---: |
| Multiply the number of degrees by $\left(\frac{\pi \text { radians }}{180^{\circ}}\right)$. | Multiply the number of radians by $\left(\frac{180^{\circ}}{\pi \text { radians }}\right)$. |

Convert each measure from degrees to radians or from radians to degrees.
$-495^{\circ}$
$\frac{5 \pi}{4}$

$$
-\frac{7 \pi}{6}
$$

Draw the given angle. Find a coterminal angle and state the reference angle.

$$
215^{\circ}
$$

$$
-\frac{\pi}{4}
$$



7. The unit circle below shows the measures of angles of rotation that are commonly used in trigonometry, with radian measures outside the circle and degree measures inside the circle. Provide the missing measures.


## Special Triangles with a Hypotenuses of 1


The side opposite the:

$$
30^{\circ}=\frac{1}{2} \text { Hypotenuse }
$$

$$
45^{0}=\frac{1}{2} \text { Hypotenuse } \sqrt{2}
$$

$$
60^{\circ}=\frac{1}{2} \text { Hypotenuse } \sqrt{3}
$$

UNIT CIRCLE
$(\cos \theta, \sin \theta)$


Create your own unit circle on a paper plate
$\sin \theta=\frac{o p p}{h y p}=\frac{y}{r}$
$\cos \theta=\frac{a d j}{h y p}=\frac{x}{r}$
$\tan \theta=\frac{o p p}{a d j}=\frac{y}{x}$

$\sec \theta=\frac{h y p}{a d j}=\frac{r}{x} \csc \theta=\frac{h y p}{o p p}=\frac{r}{y} \cot \theta=\frac{a d j}{o p p}=\frac{x}{y}$

Find the angle or value
$\sin \frac{13 \pi}{4}$

$$
\csc \frac{19 \pi}{6}
$$

$$
\tan \left(-\frac{\pi}{4}\right) \quad \sec \left(-\frac{3 \pi}{2}\right)
$$

$$
\begin{array}{ll}
\sin \theta=\frac{\sqrt{3}}{2} & \csc \theta=-2 \\
\cos \theta=-\frac{1}{2} & \sec \theta=\frac{2}{\sqrt{3}} \\
\tan \theta=\text { und } & \cot \theta=\frac{1}{\sqrt{3}}
\end{array}
$$



Evaluate the following

$$
\begin{array}{ll}
\sin \pi= & \csc \frac{5 \pi}{4}= \\
\cos \frac{3 \pi}{4}= & \sec \frac{\pi}{6}= \\
\tan \frac{11 \pi}{6}= & \cot \frac{\pi}{3}=
\end{array}
$$

## 4-1

Find the angle that satisfies the following equations:

$$
\cos \theta=-\frac{\sqrt{3}}{2} ; 0 \leq \theta \leq \pi
$$

$$
\tan \theta=-\frac{\sqrt{3}}{3} ;-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

$$
\sin \theta=-\frac{\sqrt{3}}{2} ;-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

