3-4 Graphing Logarithmic Functions

> Logarithms \& Exponentials
$f(x)=2^{x} \& f(x)=\log _{2} x$ are inverses

$x=2^{y} \quad$ 1. switch $x \& y$
$y=\log _{2} x$ 2. solve for y
natural log

$$
f(x)=\ln x
$$

Complete the table for the function $f(x)=\log x$
Then plot the points on the graph and connect the dots.

x	$f(x)=\log x$
0.1	
1	
10	

Complete the table for the function $f(x)=\ln x$
Then plot the points on the graph and connect the dots.

x	$f(x)=\ln x$
$\frac{1}{e} \approx 0.368$	
1	
$e \approx 2.72$	
$e^{2} \approx 7.39$	

Describe the transformations on each graph:
$f(x)=\log (x+2)$
$f(x)=3 \log (-x)-4$
$f(x)=-2 \ln (2 x)+5$

Analyze the graphs of:

$$
f(x)=\log x
$$

$$
f(x)=\ln x
$$

Domain:

Range:

End
behavior:

VA/HA:

Increasing/
Decreasing:

Intercepts:

Graphing Transformed Logarithmic Functions

When graphing a transformed function, it is helpful to consider the following features of the graph: the vertical asymptote, and two reference points $(1,0)$ and (b,1).

Function	$\boldsymbol{f}(\boldsymbol{x})=\log _{\mathbf{b}} \boldsymbol{x}$	$\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a} \log _{\mathbf{b}}(\boldsymbol{x}-\boldsymbol{h})+\boldsymbol{k}$
Asymptote	$x=0$	$x=h$
Reference point	$(1,0)$	$(1+h, k)$
Reference point	$(b, 1)$	$(b+h, a+k)$

Graph and analyze the following functions:

$f(x)=2 \cdot \log (x-1)$								
	4							
Domain:	2							
								x
Range:	0	2	4	6		8	10	
	-2							
	$-^{-4}$							

$f(x)=\log _{2}(x+1)-3$
Domain:

Range:

End
behavior:

End

VA/HA:
VA/HA:

Increasing/	Increasing/
Decreasing:	Decreasing:

Intercepts:

Intercepts:

$$
f(x)=3 \cdot \ln (x)+2
$$

Domain:

Range:

End

behavior:

VA/HA:

Increasing/

Decreasing:

Intercepts:

