3-4 Graphing Logarithmic Functions

Logarithms & Exponentials

 $f(x) = 2^x \& f(x) = \log_2 x$ are inverses

to find inverse:

 $x = 2^{x}$ $y = \log_2 x$ 1. switch x&y 2. solve for y

natural log

$$f(x) = \ln x$$

Complete the table for the function $f(x) = \log x$

Then plot the points on the graph and connect the dots.

	ж	$f(x) = \log x$
Г	0.1	
	1	
Г	10	

Complete the table for the function $f(x) = \ln x$

Then plot the points on the graph and connect the dots.

x	$f(x) = \ln x$
$\frac{1}{e} \approx 0.368$	
1	
e ≈ 2.72	
e²≈7.39	

Analyze the graphs of:

$$f(x) = \log x$$
 $f(x) = \ln x$

Domain:

Range:

End

behavior:

VA/HA:

Increasing/

Decreasing:

Intercepts:

Describe the transformations on each graph:

$$f(x) = \log(x+2)$$

$$f(x) = 3\log(-x) - 4$$

$$f(x) = -2\ln(2x) + 5$$

Graphing Transformed Logarithmic Functions

When graphing a transformed function, it is helpful to consider the following features of the graph: the vertical asymptote, and two reference points (1,0) and (b,1).

Function	$f(x) = \log_b x$	$g(x) = a \log_b (x - h) + k$
Asymptote	x = 0	x = h
Reference point	(1, 0)	(1 + h, k)
Reference point	(b, 1)	(b + h, a + k)

Graph and analyze the following functions:

$$f(x) = 2 \cdot \log(x - 1)$$

Domain:

Range:

End

behavior:

VA/HA:

Increasing/

Decreasing: Intercepts:

$$f(x) = 3 \cdot \ln(x) + 2$$

Domain:

Range: End

behavior:

VA/HA:

Increasing/

Decreasing:

Intercepts:

$$f(x) = \log_2(x+1) - 3$$

Domain:

Range:

End behavior:

VA/HA:

Increasing/

Decreasing:

Intercepts: