$$
275 e^{0.06 x}=1000
$$
 $$
y_{1}=\quad y_{2}=
$$

Solving Equations Algebraically

-simplify any terms possible without using logarithms

- re-write in logarithmic/exponential form
- use the property of equality for logarithmic equations

Inverses

$$
x+7=21 \quad \ln x=7 \quad \log x=3
$$

Solve the following equations
A) $10=5 e^{4 x}$
в) $5^{x}-4=7$
C) $2 e^{x-1}+5=80$
D) $20\left(\frac{1}{2}\right)^{\frac{x}{3}}=5$

Solve the following
A) $\ln (x+12)=3 \ln 2$
B) $\log x^{4}=2$
C) $4 \ln (x+7)-5=1$
D) $3-\log (x+2)=5$

Solve the following
A) $\frac{1}{2} \ln (x+3)-\ln x=0$
B) $\log (x-2)+\log (x+7)=3 \log 4$

Comparing acidity: $p H=-\log \left[H^{+}\right]$
H^{+}hydrogen-ion concentration
Sour Vinegar has a pH of 2.4 and a box of Leg and Sickle baking soda has a pH of 8.4.
a) what are their hydrogen-ion concentrations
b) how many times greater is the $[\mathrm{H}+]$ of vinegar than baking soda?

Comparing Earthquake intensities:
On the Richter scale, the magnitude M of an earthquake depends on the amount of energy, E (measured in ergs), released by the earthquake as follows:

$$
M=\frac{2}{3} \log \frac{E}{10^{11.8}}
$$

How much energy is released in a: 7.4 quake compared to a 5.5 quake?

Newton's Law of Cooling

$$
T(t)=T_{s}+\left(T_{0}-T_{s}\right) e^{-k t}
$$

This law states that the temperature difference between an object (T) and its surroundings (\boldsymbol{T}) decreases exponentially as a function of time (t). Where \boldsymbol{T}^{2} is the initial temperature of the object, and $-k$ is our constant of variation representing the c8nstant rate of decrease in the temperature difference.
A cup of cocoa has cooled from 95° to 50° after 13 minutes in a room at 25°. How long will it take for the cup to cool to 30° ?

