3-2 Properties of Logarithims

$$
\log _{a} 1=0 \quad \log _{a} a=1
$$

Evaluate

$$
\log _{5} 1 \quad \ln 1
$$

$\log 10$
$\log _{4} 4$

Inverse Property of Logarithms If b and M are positive real numbers, with $b \neq 0$, then

$$
b^{\log _{b} M}=M
$$

Evaluate

$$
12^{\log _{12} \sqrt{2}} \quad 10^{\log _{0} 0.2}
$$

Inverse Property of Logarithms If b and r are positive real numbers, with $b \neq 0$, then

$$
\log _{a} a^{r}=r
$$

Evaluate
$\log _{4} 4^{3} \quad \ln e^{-0.5} \quad \log 10^{-4}$

Power Rule of Logarithms
If M and b are positive real numbers, with $b \neq 0$, then

$$
\log _{b} M^{r}=r \log _{b} M
$$

Use the power Rule of Logarithms to express all powers as factors.

$$
\log _{8} 3^{5} \quad \ln x^{\sqrt{3}}
$$

$3 \log _{2} 5$

Write the following as the sum or difference of logarithms.

$$
\log _{3}\left(\frac{4 x}{y}\right) \quad \log _{2}\left(x^{2} y^{3}\right)
$$

Expand the logarithm.
$\log \left(8 x y^{4}\right)$

$$
\log _{3}\left(\frac{9 m^{4}}{\sqrt[3]{n}}\right)
$$

Write each of the following as a single logarithm.

$$
\log _{6} 3+\log _{6} 12 \quad \log (x-2)-\log x
$$

Write each of the following as a single logarithm.

$$
\ln x^{5}-2 \ln (x y)
$$

$$
\log (x-1)+\log (x+1)-3 \log x
$$

Rewrite and express in terms of a and b given that $a=\ln 3$ and $b=\ln 4$
$2 \ln 4$

$$
\ln 36 \quad \ln 27
$$

Rewrite the following as a natural log
$\log _{4} 45$
$\frac{\log 27}{3}$

Use your calculator to approximate the following:
$\log _{4} 45 \quad \log _{3} 75 \quad \log _{6} 40$

Summary of Properties

$\log _{a} a^{r}=r \quad b^{\log _{b} M}=M$
$\log _{b}(M N)=\log _{b} M+\log _{b} N$
$\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$
$\log _{b} M^{r}=r \log _{b} M$
$\log _{a} M=\frac{\log _{b} M}{\log _{b} a}$

