3-1 Defining and evaluating logarithms

Explain 1 Converting Between Exponential and Logarithmic Forms of Equations

In general, the exponential function $f(x)=b^*$, where b>0 and $b\ne1$, has the logarithmic function $f^{-1}(x)=\log_b x$ as its inverse. For instance, $if(x)=3^*$, then $f^+(x)=\log_b x$, and $if(y)=\frac{1}{3}$, then $f^+(x)=\log_b x$. The inverse relationship between exponential functions and logarithmic functions also means that you can write any exponential equation as a logarithmic equation and any logarithmic equation as an exponential equation.

Exponential Equation

Logarithmic Equation

$$b^x = a$$

$$\log_b a = x$$

$$b > 0, b \neq 1$$

Module 15

Switch between Log and exponential forms

Exponential Equation	Logarithmic Equation
3 ⁵ = 243	
	$\log_4 \frac{1}{64} = -3$
$\left(\frac{3}{4}\right)^r = s$	
	$\log_{\frac{1}{5}} v = w$

The natural logarithm: $y = \ln x$ is equivalent to $x = e^{y}$

The common logarithm: $y = \log x$ is equivalent to $x = 10^{3}$

Exponential Equation	Logarithmic Equation
$e^5 \approx 148.4$	
	$\ln 6 \approx 1.8$
$10^5 = 100,000$	
	log 1,000 = 3

If
$$f(x) = \log_{\frac{1}{2}} x$$
, find $f(4)$, $f\left(\frac{1}{32}\right)$ and $f\left(2\sqrt{2}\right)$.

$$f(4) = x \qquad \qquad f\left(\frac{1}{32}\right) = x$$

$$\log_{\frac{1}{2}} 4 = x \qquad \qquad \log_{\frac{1}{2}} \frac{1}{32} = x$$

$$f\left(\frac{1}{32}\right) = x$$

$$\log_{\frac{1}{2}} \frac{1}{32} = x$$

$$\log_{\frac{1}{2}} 2\sqrt{2} = x$$

 $f(2\sqrt{2}) = x$

So,
$$f(4) =$$
 So, $f(\frac{1}{32}) =$.

$$x = \boxed{$$
So $f(2\sqrt{2}) = \boxed{}$

Find the exact value without a calculator

$$\log_2 32$$

$$\log_4 \frac{1}{16}$$

log10000000

log.00001

You try

$$\log_5 25$$

$$\log_2 \frac{1}{8}$$

log1000

log.001

Use a scientific calculator to find the common logarithm and the natural logarithm of the given number. Verify each result by evaluating the appropriate exponential expression.

12. 4

The acidity level, or pH, of a liquid is given by the formula pH $=\log\frac{1}{[H^+]}$ where $[H^+]$ is the concentration (in moles per liter) of hydrogen ions in the liquid. In a typical chlorinated swimming pool, the concentration of hydrogen ions ranges from 1.58×10^{-8} moles per liter to 6.31×10^{-8} moles per liter. What is the range of the pH for a typical swimming pool?