3-1 Defining and evaluating logarithms

## (6) Explain 1 Forms of Equations

In genera, the exponential function $f(x)=b^{t}$ where $b>0$ and $b \neq 1$, has the $\log$ ogrithmic fiuction $f$, as its inverse. For instance, if $f(x)=3^{3}$, then $f^{-1}(x)=\log , x$, and if $f(x)=\left(\frac{1}{4}\right.$ ), then $f^{-1}(x)=\log x$, The inverse celaionstip beeween exponential functions and logarithmic functions also means that you can write any exponential
quation as equation as a logarithmic equation and any logarithmic equation as an exponential equation.

$$
\begin{array}{ll}
\text { Exponential Equation } & \text { Logarithmic Equation } \\
b^{x}=a & \log _{b} a=x
\end{array}
$$

Switch between Log and exponential forms

$$
b>0, b \neq 1
$$

| Exponential Equation | Logarithmic Equation |
| :---: | :---: |
| $3^{5}=243$ |  |
|  | $\log _{4} \frac{1}{64}=-3$ |
| $\left(\frac{3}{4}\right)^{\prime}=s$ |  |
|  | $\log _{\frac{1}{5}} v=w$ |

$$
\begin{array}{lrr}
\text { If } f(x)=\log _{\frac{1}{2}} x, \text { find } f(4), f\left(\frac{1}{32}\right) \text { and } f(2 \sqrt{2}) . & f(2 \sqrt{2})=x \\
f(4)=x & f\left(\frac{1}{32}\right)=x & \log _{\frac{1}{2}} 2 \sqrt{2}=x \\
\log _{\frac{1}{2}} 4=x & \log _{\frac{1}{2}} \frac{1}{32}=x & \\
\\
\text { So, } f(4)=\square . & \text { So, } f\left(\frac{1}{32}\right)=\square .
\end{array}
$$

Find the exact value without a calculator
$\log _{2} 32$
$\log _{4} \frac{1}{16}$
$\log 10000000$
log. 00001

You try
$\log _{5} 25$
$\log _{2} \frac{1}{8}$
$\log 1000$

Your Turn
Use a scientific calculator to find the common logarithm and the natural logarithm of the given number. Verify each result by evaluating the appropriate exponential expression.
12. 4
11. 0.25

The acidity level, or pH , of a liquid is given by the formula $\mathrm{pH}=\log \frac{1}{\left[\mathrm{H}^{+}\right]}$where $\left[\mathrm{H}^{+}\right]$is the concentration (in moles per liter) of hydrogen ions in the liquid. In a typical chlorinated swimming pool, the concentration of hydrogen ions ranges from $1.58 \times 10^{-8}$ moles per liter to $6.31 \times 10^{-8}$ moles per liter. What is the range of the pH for a typical swimming pool?

