12-1 Exponential Functions

Objectives:

- I can simplify using properties of exponents
- I can solve an exponential function

Simplify or re-write the following

$$
\begin{array}{ll}
x^{2} \cdot x^{4} & \frac{x^{7}}{x^{3}} \\
\sqrt[5]{x^{2}} & \sqrt[8]{x^{4}} \\
8^{\frac{2}{3}} & \frac{a^{3} b^{-2}}{b^{3} a^{-4}} \\
e^{3} \cdot e^{x} & e^{\ln x-4}
\end{array}
$$

$$
x^{a} \cdot x^{b}=x^{a+b} \quad \sqrt[a]{x^{b}}=x^{\frac{b}{a}}
$$

$$
\frac{x^{a}}{x^{b}}=x^{a-b} \quad \frac{x^{-a}}{x^{-b}}=\frac{x^{b}}{x^{a}}
$$

EXPONENTIAL FUNCTION

$$
f(x)=a(b))_{\substack{\text { Initial Value } \\(y \text {-intercept })}}^{\substack{\text { Base } \\ \text { (Multiplier) }}}
$$

Exponential Growth and Decay

When $b>1$, the function represents exponential growth When $0<b<1$, the function represents exponential decay

$$
f(x)=a(1 \pm r)^{t}
$$

The population of Orem is 300,000 and increasing at the rate of 2.49% each year.
What will the population be in 10 years?

P is the principal

r is the annual interest rate
n is the number of compounding periods per year
t is the time in years

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

You invest $\$ 1000$ at 8% compounded quarterly. How much will be in the account after 15 years

How long will it take to double your money if interest is earned at the rate of 3.99% compounded annually?

Exponential Parent Function

Growth

Decay

Continuous Compounding Formula

If P dollars are invested at an interest rate r, that is compounded continuously, then the amount, A, of the investment at time t is given by

$$
A(t)=P e^{r t}
$$

A person invests $\$ 1550$ in an account that earns 4% annual interest compounded continuously.
How much money will be in the account about 8 years?

Graph each function and find the attributes listed.
Graph each function and find the attributes listed.

$$
(x)=4\left(2^{x+2}\right)-6
$$

