11-3 Combinations and Permutations

11-3a I can determine the difference between combinations and permutations

11-3b I can use combinations and permutations in real world scenarios

How many ways can you pick a team of 3 people from a group of 5 people?

Combination!

How many ways can you pick a President, Vice President and Waterboy from a group of 5 people?

Permutation!

How many ways can you pick a team of 3 people from a group of 5 people?

How many ways can you pick a President, Vice President and Waterboy from a group of 5 people?

Factorial

$$
8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1
$$

$$
\frac{8!}{5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=8 \cdot 7 \cdot 6
$$

Combination - order doesn't matter

Picking Dave, Bob and Harry for my team is the same as picking Harry, Bob and Dave

$$
C(n, k)=\frac{n!}{(n-k)!k!}
$$

Find all the ways to pick k things from a group of n, and divide by the k ! variants (redundancies)

You have 15 friends and you need to pick 9 of them to help you T.P a house. How many ways can you do it?

Is this a combination? Does order matter?

$$
C(n, k)=\frac{n!}{(n-k)!k!}
$$

Permutation - order matters

Picking a person for each position (President, VP and Waterboy)

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

You have n items to choose from and want to find the number of ways k items can be ordered

How many ways can we award a gold, silver and bronze medal to 8 competitors?

Is this a permutation? Does order matter?

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

How many ways could you pick your top 5 favorite books out of 15 books?

How many ways could you pick 5 books to take on vacation out of 15 books?

