10-1 Rational Functions

Rational w/ odd power

Parent Equation:

Domain Range Increasing Decreasing Left End Behavior

Right End Behavior

x-intercepts y-intercepts Vertical Asymptote(s): Horizontal Asymptote: One-to-One?

Rational w/even power

Parent Equation:

Domain Range Increasing Decreasing Left End Behavior

Right End Behavior

x-intercepts y-intercepts Vertical Asymptote(s): Horizontal Asymptote: One-to-One? Sketch a graph and analyze of the following.

Domain:

Range:

V Asymptote:

H Asymptote:

Increasing:

Decreasing:

End Behavior:

Asymptote behavior:

Sketch a graph and analyze of the following.

Domain:

Range:

V Asymptote:

H Asymptote:

Increasing:

Decreasing:

End Behavior:

Asymptote behavior:

Write an equation based on the following graphs.

When given a rational function in the form of $f(x) = \frac{mx+n}{px+q}$ where $m \neq 0$ and $p \neq 0$, you can use division to re-write the function in a form to identify the transformations.

$$g(x) = \frac{3x-4}{x-1}$$

Given $f(x) = \frac{4x+7}{x+4}$, use division to re-write the function and

identify the transformations. Then sketch a graph and state the domain, range, and intervals of increasing and decreasing.

Given the following functions, use division to re-write the function and

identify the transformations. Then sketch a graph.

$$(a) f(x) = \frac{3x+7}{x+2}$$

¢	

(b)
$$f(x) = \frac{5-2x}{x+4}$$

