10-1 Rational Functions

Rational w/ odd power

Parent Equation:

Domain
Range
Increasing
Decreasing
Left End Behavior

Right End Behavior
x-intercepts
y-intercepts
Vertical Asymptote(s):
Horizontal Asymptote:
One-to-One?

Rational w/even power

Parent Equation:
Domain
Range
Increasing
Decreasing
Left End Behavior

Right End Behavior
x-intercepts
y-intercepts
Vertical Asymptote(s):
Horizontal Asymptote:
One-to-One?

Sketch a graph and analyze of the following.

Domain:

$$
f(x)=-\frac{1}{x}+3
$$

Range:
V Asymptote:
H Asymptote:
Increasing:
Decreasing:
End Behavior:

Asymptote behavior:

Sketch a graph and analyze of the following.

Domain:

Range:

V Asymptote:
H Asymptote:
Increasing:
Decreasing:
End Behavior:

Asymptote behavior:

$$
\begin{aligned}
& f(x)=\frac{1}{(x+3)^{2}}+1 \\
& \underbrace{}
\end{aligned}
$$

Write an equation based on the following graphs.

When given a rational function in the form of $f(x)=\frac{m x+n}{p x+q}$ where $m \neq 0$ and $p \neq 0$, you can use division to re-write the function in a form to identify the transformations.

$$
g(x)=\frac{3 x-4}{x-1}
$$

Given $f(x)=\frac{4 x+7}{x+4}$, use division to re-write the function and
identify the transformations. Then sketch a graph and state the domain, range, and intervals of increasing and decreasing.

Given the following functions, use division to re-write the function and
identify the transformations. Then sketch a graph.
(a) $f(x)=\frac{3 x+7}{x+2}$

(b) $f(x)=\frac{5-2 x}{x+4}$

