1-2 Solving Radical Equations

Remember that you can graph the two sides of an equation as separate functions to find solutions of the equation: a solution is any x-value where the two graphs intersect.

The graph of $y=\sqrt{x-3}$ is shown on a calculator window of $-4\le x\le 16$ and $-2\le y\le 8$. Reproduce the graph on your calculator. Then add the graph of y=2.

How many solutions does the equation $\sqrt{x-3}=2$ have? _____ How do you know?

On your calculator, replace the graph of y = 2 with the graph of y = -1.

How many solutions does the equation $\sqrt{x-3}=-1$ have? _____ How do you know?

Find the solution graphically

$$(x+5)^{\frac{1}{2}} - 2 = 1$$
 $2 + \sqrt{x+10} = x$

$$2 + \sqrt{x + 10} = 3$$

Solve the following, check for extraneous solutions

$$2\sqrt{x} = 3\sqrt{x-2}$$

$$\sqrt{5x-11} = x-1$$

Solve the following, check for extraneous solutions

$$\sqrt{2x+5}+4=3$$

$$\sqrt{2x+5}+4=3$$
 $(x+6)^{\frac{1}{2}}-(2x-4)^{\frac{1}{2}}=0$

Example 2 Solve the equation.

$$\sqrt[3]{x+2} + 7 = 5$$

$$2(x-50)^{\frac{1}{3}} = -10.$$

Solve the following equations

$$\sqrt[3]{x-5} = \sqrt[3]{7-x}$$
 $\sqrt[3]{x+2} = \sqrt[3]{x+3}$

$$\sqrt[3]{x+2} = \sqrt[3]{x+3}$$