## 1-2 Solving Radical Equations

Remember that you can graph the two sides of an equation as separate functions to find solutions of the equation: a solution is any $x$-value where the two graphs intersect. The graph of $y=\sqrt{x-3}$ is shown on a calculator window of $-4 \leq x \leq 16$ and $-2 \leq y \leq 8$. Reproduce the graph on your calculator. Then add the graph of $y=2$.


How many solutions does the equation $\sqrt{x-3}=2$ have? ___ How do you know?

On your calculator, replace the graph of $y=2$ with the graph of $y=-1$.
How many solutions does the equation $\sqrt{x-3}=-1$ have? ___ How do you know?

Solve the following, check for extraneous solutions

$$
2 \sqrt{x}=3 \sqrt{x-2}
$$

$$
\sqrt{5 x-11}=x-1
$$

Find the solution graphically

$$
(x+5)^{\frac{1}{2}}-2=1 \quad 2+\sqrt{x+10}=x
$$

Solve the following, check for extraneous solutions $\sqrt{2 x+5}+4=3 \quad(x+6)^{\frac{1}{2}}-(2 x-4)^{\frac{1}{2}}=0$

Example 2 Solve the equation.

$$
\sqrt[3]{x+2}+7=5 \quad 2(x-50)^{\frac{1}{3}}=-10
$$

Solve the following equations

$$
\sqrt[3]{x-5}=\sqrt[3]{7-x} \quad \sqrt[3]{x+2}=\sqrt[3]{x+3}
$$

